CoM SSA SEACAP Toolbox

Rights and replication

The CoM SSA SEACAP Toolbox was developed by ICLEI Africa in partnership with GIZ. Any person or organisation using or replicating these slides are required to reference them as below:

Publisher:
The Covenant of Mayors in Sub-Saharan Africa (CoM SSA)
c/o Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)
All rights reserved. Licensed to the European Union and the German Federal Ministry for Economic Cooperation and Development.

For more information contact: helpdesk@comssa.org
Publication date: November 2020
Author: ICLEI Africa
The full SEACAP Toolbox is found here: https://comssa.org/
This chapter is one component of the SEACAP Toolbox for the full Toolbox, please visit: https://comssa.org/

What you will learn in this chapter:
- Key definitions related to Energy Access
- Energy access attributes and indicators
- 4 phases of developing the Access to Energy pillar of the SEACAP

This chapter has been designed for Local Government Officials and partners completing a SEACAP
THE 3 PILLARS OF A SEACAP

Mitigation

Adaption

Access to Energy
What is energy access?

The International Energy Agency defines energy access as:

“A household having reliable and affordable access to both clean cooking facilities and to electricity, which is enough to supply a basic bundle of energy services initially, and then an increasing level of electricity over time to reach the regional average”.

“A basic bundle of energy services means, at a minimum, several lightbulbs, task lighting (such as a flashlight), phone charging and a radio.”
Access to Energy:

Key attributes:

- **Secure**: The reliability and the stability of the energy sources
- **Sustainable**: The share of renewable energy in the energy mix
- **Affordable**: The cost and the willingness to pay for the energy
- **Other attributes**: health, safety, capacity, modern
The Multi-Tier Framework of energy access

• The MTF approach goes beyond the traditional binary measurement of energy access—for example, having or not having a connection to electricity, using or not using clean fuels in cooking.

• The multi-tier framework attempts to capture the multi-dimensional nature of energy access and the vast range of technologies and sources that can provide energy access, while accounting for the wide differences in user experience.
Minimum electricity requirements by tier of electricity access

Covenant of Mayors in Sub-Saharan Africa
Appliances by load level and associated capacity tiers

<table>
<thead>
<tr>
<th>Load level</th>
<th>Indicative electric appliances</th>
<th>Capacity tier typically needed to power the load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low load (3–49 W)</td>
<td>Incandescent light bulb, fluorescent tube, compact fluorescent light (CFL) bulb, LED light bulb, Torch/flashlight/lantern, Radio/CD Players/sound system, Smartphone (internet phone) charger, Regular mobile phone charger</td>
<td>TIER 1</td>
</tr>
<tr>
<td>Low load (50–199 W)</td>
<td>Television B/W, computer, fan, flat color TV, regular color TV, VCD/DVD</td>
<td>TIER 2</td>
</tr>
<tr>
<td>Medium load (200–799 W)</td>
<td>Indoor air cooler, refrigerator, electric water pump, electric food processor/blender, rice cooker, freezer, electric sewing machine, electric hot water pot/kettle</td>
<td>TIER 3</td>
</tr>
<tr>
<td>High load (800–1,999 W)</td>
<td>Washing machine, electric iron, microwave oven, hair dryer</td>
<td>TIER 4</td>
</tr>
<tr>
<td>Very high load (2,000 W or more)</td>
<td>Air conditioner (AC), space heater, electric water heater, solar based water heater</td>
<td>TIER 5</td>
</tr>
</tbody>
</table>
Africa’s share of selected global indicators

- GDP
- Energy demand
- Population
- Population relying on traditional use of biomass
- Population without access to electricity

Africa accounts for a low share of the world’s energy demand and a high share of the population without access to modern energy services

Source: IEA 2019: Africa Energy Outlook
State of energy access in Africa

- In Africa, about 565 million people still lack access to electricity while an estimated 900 million people do not have access to clean cooking solutions (2018 data reported in 2020)

- 70% (548 million people) of global population without electricity access are from sub-Saharan Africa. (2018 data reported in 2020)

- About 85% of the sub-Saharan African population lacks access to clean cooking (2018 data reported in 2020)
Access to Electricity

Definition:

- Access to electricity refers to the availability of electricity in areas not reached by the grid. In this case, there are options for providing electricity by a decentralised or stand-alone power source (petrol or diesel generator), or a renewable energy device (solar PV, wind turbine or biomass gasifier). (Source: JRC guidebook, 2018)

- Electricity access refers to the percentage of people in a given area that have relatively simple, stable access to electricity (IEA).
Population without access to electricity by country in Africa, 2018

About 500,000 premature deaths per year are related to lack of access to clean cooking facilities, with women and children the worst affected.

Lack of access to clean fuels contributes significantly to women's workloads, and poses a barrier to the economic advancement of women.

Forest degradation and deforestation.

Forest cover in SSA is declining at 3%, almost double the rate in other developing regions.

Source: IEA 2019: Africa Energy Outlook
Key benefits of increased electricity access in Africa

- Cold storage powered by renewable energy supply, for example, could help reduce post-harvest losses, which are estimated at between 20% and 50% of food produced in sub-Saharan Africa.

- Electricity can also play an important role in improving agricultural productivity through irrigation, as several successful examples of stand-alone solar water pumps show, provided that policy makers also tackle wasteful irrigation practices.
Impacts of electricity access deficits in Africa

The absence of electricity access, or intermittent access deeply impacts service delivery:

- In 2016 in sub-Saharan Africa, around half of lower secondary schools and 57% of upper secondary schools had no access to electricity (UNICEF Institute for Statistics, 2019).

- In 27 sub-Saharan African countries, close to 60% of health centre facilities have no access to reliable electricity.
Access to clean cooking means “access to (and primary use of) modern fuels and technologies, including natural gas, liquefied petroleum gas (LPG), electricity and biogas, or improved biomass cook-stoves (ICS), as opposed to the basic biomass cook-stoves and three-stone fires”. (JRC guidebook, 2018)

Cook-stoves are commonly called “improved” if they are more efficient, emit less emissions or are safer than the traditional **cook stoves** or three-stone-fires.
Population without access to clean cooking in Africa, 2018

Around 900 million people are without access to clean cooking in Africa; in 32 countries more than 75% of the population is without access to clean cooking.

Source: IEA 2019: Africa Energy Outlook
Impacts of clean cooking access deficits in Africa

- About 500,000 premature deaths per year are related to lack of access to clean cooking facilities, with women and children the worst affected.

- Lack of access to clean fuels contributes significantly to women’s workloads, and poses a barrier to the economic advancement of women.

- Increasing forest degradation and deforestation as forest cover in SSA is declining at 3%, almost double the rate in other developing regions.
Access to Electricity: Indicators as per the JRC Guidebook

<table>
<thead>
<tr>
<th>Key Attributes</th>
<th>Key Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>• % of population or households having access to electricity (grid/off-grid)</td>
</tr>
<tr>
<td>Security</td>
<td>• Number of hours per day of available electricity</td>
</tr>
<tr>
<td></td>
<td>• Average number of electricity interruptions per day</td>
</tr>
<tr>
<td></td>
<td>• Number of days without electricity per year</td>
</tr>
<tr>
<td>Sustainability</td>
<td>• % of electricity from REs</td>
</tr>
<tr>
<td></td>
<td>• Number of mini-grids and stand-alone systems</td>
</tr>
<tr>
<td></td>
<td>• Laws and regulations in place for mini-grids and stand-alone systems?</td>
</tr>
<tr>
<td>Affordability</td>
<td>• % of population able to pay for electricity or willingness to pay</td>
</tr>
<tr>
<td></td>
<td>• % of expenditure of public buildings for electricity</td>
</tr>
<tr>
<td></td>
<td>• Financial and regulatory incentives for renewable energy in place?</td>
</tr>
</tbody>
</table>
Access to clean cooking: Indicators as per the Guidebook

<table>
<thead>
<tr>
<th>Key Attributes</th>
<th>Key Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>• % of population/households with clean cooking access</td>
</tr>
</tbody>
</table>
| Security | • % of population/households relying on the traditional use of biomass for cooking
 • % of population/household relying on LPG or other sources
 • Availability of resources: time and distance to gather fuel wood? |
| Sustainability | • Number of improved cook-stoves used
 • Sustainable charcoal production?
 • Awareness and/or education programs in place? |
| Affordability | • Financial and regulatory incentives or subsidy mechanisms in place?
 • % of population able to pay (or willingness to pay) for transition to clean cooking |
PHASES OF DEVELOPING THE ACCESS TO ENERGY PILLAR OF THE SEACAP

1. Initiation
 Preparing the ground

2. Planning
 Pre-assessment
 Development

3. Implementation

4. Monitoring and Reporting
PHASE 1: INITIATION

Phase 1.1: Pre-initiation

1. Identification of city contact point

Entails the identification of experts, local authorities and organizations in the energy sector of the city which may include:

- Ministry in charge of energy
- Utility suppliers
- NGOs working on energy access initiatives in the city

2. Designation of governance

Mapping out the team that will be responsible for the various phases of developing a sustainable energy access for the city
PHASE 1: INITIATION

Phase 1.2: Initiation

• Once a team and focal point has been identified, the next an inception meeting to introduce the project to all relevant city departments is necessary. A work plan, roles and responsibilities can be discussed in this meeting.

• It is also essential to set up a project advisory committee with stakeholders from the national government. A terms of reference might have to be signed by each stakeholder.
PHASE 2: PLANNING

ACCESS TO ENERGY ASSESSMENT ➔ TARGET SETTING ➔ ACTION PLANNING
PHASE 3: IMPLEMENTATION

Key facts about the implementation phase

- The implementation phase involves physically implementing the Access to energy actions identified.
- This phase takes the longest time, the most efforts and the largest portion of financial resources;
- It requires the involvement of all stakeholders, including national authorities, academia, private sector, CSOs and communities;
- Communication and sensitization are crucial to ensure citizens’ buy-in.
PHASE 4: MONITORING AND REPORTING

Key facts about the monitoring and reporting phase

- There is an offline Excel-based reporting template developed by the Joint Research Centre which aims at guiding local governments on submitting the contents of their SEACAP;

- Once the SEACAP is submitted, it is required to regularly monitor the implementation of the actions and update the reporting template accordingly. This will ensure continuous improvement of the SEACAP over time;
PHASE 4: MONITORING & REPORTING

<table>
<thead>
<tr>
<th>Reporting element</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to energy assessment</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to energy targets</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to energy action plans</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

X*: Progress report should be submitted every 2 years after submitting the SEACAP
3.1: Introducing the Energy Access Pillar

What you will learn in this chapter:
• Key definitions related to Energy Access
• Energy access attributes and indicators
• 4 phases of developing the Access to Energy pillar of the SEACAP

The next chapter is: 3.2: Developing the Access to energy assessment of the SEACAP
CoM SSA programme is jointly implemented by:

- AECID
- AFD
- EF
- GIZ

CoM SSA programme is co-funded by:

- European Union
- German Cooperation
- Ministry of Foreign Affairs, Spain
- AECID

AECID, AFD, EF and GIZ are implementing the Covenant of Mayors in Sub-Saharan Africa (CoM SSA) programme in cooperation with other CoM SSA partners, Secretariat and Helpdesk. The content of this presentation do not necessarily reflect the views of the European Union or the other co-funders.
Thank you

Find out more: http://comssa.org
Contact: helpdesk@comssa.org