Evidence-Based Report

Data Talks: What data do local governments really need to plan effectively for climate change?

Produced by the CoM SSA Secretariat and Technical Helpdesk

September 2021
Introduction

Climate change is a global phenomenon that is already affecting every inhabited region across the globe (IPCC, 2021), with cities and local municipalities experiencing these effects severely. Climate change has costly impacts on infrastructure, service delivery, community livelihoods, and human health. At the same time, urban areas are a key contributor to climate change, with estimates suggesting they are responsible for 75% of global CO\textsubscript{2} emissions, predominantly as a result of the transport and building sectors (UNEP, 2021). Local governments, therefore, must play an integral role in combating climate change, both through reducing emissions through renewable energy use, cleaner production techniques and regulations to limit industrial emissions, but also through adaptation initiatives to build the resilience of urban populations.

Many local governments are taking action towards achieving their visions and imperatives for socioeconomic development while addressing the climate challenge. However, achieving these outcomes can be challenging (UN Habitat, 2015). Reliable data – including environmental, social and economic data (gender-disaggregated where appropriate) – are essential when trying to understand local governments’ contributions to rising emissions. Robust data also assist local governments in designing appropriate responses and prioritising actions that will have the greatest impact, while still contributing to other long-term socio-economic development goals (Mubaya et al. 2020; Papon and Nelson, 2020). Additionally, when looking to attract finance to implement climate actions, local and national governments are increasingly asked by funders for better justifications as to why their proposals offer appropriate responses to future or
projected climate change impacts. For example, the Green Climate Fund (GCF) requires a detailed climate rationale for each project proposal, including the climate impacts or risks that the proposed activities address, or how the project reduces emissions and shifts to a low emissions pathway. The climate rationale must also describe what would occur in the absence of the project and justify why the specific activities in the proposal have been selected (Melkie et al., 2020). The data required for such an argument are challenging to obtain in data-scarce environments, but are necessary to access finance.

Aim

The aim of this report is to review and summarise what data are needed for local governments to effectively plan for climate change, how these data are used and for what purpose, highlight the challenges faced in data-scarce regions across Africa, and showcase some innovative solutions to these challenges.

Methodology

This evidence-based report draws on a number of sources to achieve the aim as stated above. These include peer-reviewed journal articles, case studies, work undertaken by multiple organisations across the climate change space (including ICLEI Africa and its partners), as well as best practices and lessons learned from local governments themselves as they plan for and implement climate action.

Findings

Background

Climate data are used by urban actors for a variety of different applications when planning for climate change. These include:

- Infrastructure planning;
- Spatial planning and land use management;
- Building design;
- Water resource management;
- Transport planning;
- Green space and ecosystem management;
- Disaster risk management and emergency services; and
- Health service management (Taylor, 2019).
In addition to the above, local governments are increasingly developing policies, programmes and plans specifically designed to adapt to, and mitigate climate change. According to United Nations (UN) Habitat, the typical climate action planning process includes the development of baseline inventories and assessments, including city-wide greenhouse gas (GHG) inventories and climate change risk and vulnerability assessments (UN Habitat, 2015). One example of a local-level climate change action plan that follows this approach is the Sustainable Energy Access and Climate Action Plan (SEACAP) under the Covenant of Mayors in Sub-Saharan Africa initiative (CoM SSA). These SEACAPs include a long-term vision to tackle three pillars, namely: i) Climate Mitigation; ii) Climate Adaptation; and iii) Access to Energy, and must have accompanying baseline assessments (Baseline Emissions Inventory; Risk and Vulnerability Assessment; and Access to Energy Assessment, respectively). The inclusion of the Access to Energy pillar in the climate action planning process is particularly important in the African context as many households in sub-Saharan Africa do not have access to electricity, which is a key input for meeting basic needs and achieving socio-economic development goals. Adaptation Policy Frameworks for Climate Change (APFs) are another example of a structured approach local governments can take to formulate and implement adaptation strategies and policies. A central part of this approach is assessing the current vulnerability of the municipality – a baseline risk and vulnerability assessment. The need for the above-mentioned inventories and assessments to be evidence-based – underpinned by robust climate data – is widely recognised. The kinds of data required are described further below.

Baseline inventories and assessments

As discussed above, baseline inventories and assessments are one of the critical steps in climate action planning as they directly inform target setting and action planning. Local governments therefore need to be able to access and process the data underpinning these assessments. There are generally three approaches to generating local-level data for these assessments: i) primary data collection; ii) downscaling national or regional data to the local level; and iii) the use of proxy data. These different approaches have different associated costs and benefits, and require different inputs. For example, undertaking a GHG emissions inventory to inform mitigation planning through the use of proxy data will require, at minimum, population data and Gross Domestic Product (GDP) data at the local level. With this level of information, local governments can make use of a proxy data tool (such as the tool developed through CoM SSA — more information provided in Annex 1) which will generate a baseline emissions inventory using national or regional default values, meaning that the quality of the inventory will be relatively low. For a more accurate inventory, additional data are required, such as information on energy use, fuel use in the transport sector, solid waste and wastewater generation and management, land use, and agricultural and industrial processes. Detailed information on the data requirements and process to be followed when undertaking an emissions inventory can be found in the Global Protocol for Community-scale Greenhouse Gas Emission Inventories (GPC) developed by C40, World Resources Institute, and ICLEI – Local Governments for Sustainability. Indeed, local governments are encouraged to use an international reporting methodology based on the Greenhouse Gas Protocol standard, such as the GPC. Such protocols enable the climate benefits of different strategies to be compared transparently, permitting the contribution of municipalities globally to be assessed and facilitating alignment with national level reporting (UN Habitat, 2015). Robust GHG emissions inventories allow local governments to not only define data-driven policies and programmes, but to identify priority sectors and develop locally-based climate actions, as evidenced by the Muhanga Case Study presented below.
Case Study: Local Climate Action Planning in Muhanga, Rwanda

Under support provided in Rwanda through the Urban Low Emission Development Strategy (LEDs) II project, a greenhouse gas inventory and a climate risk and vulnerability assessment were produced for the District of Muhanga, as well as the District of Rubavu and the City of Kigali in Rwanda, for the first time. A combination of methods was used – downscaling national data and co-producing district-level data – which enabled researchers to uncover crucial insights that Muhanga’s officials are now able to apply to their work. Despite the relatively low emissions profile of Rwandan districts and cities (in relation to most other African cities), developing greenhouse gas inventories at the district-level using an internationally standardised methodology uncovered several nuances, opportunities and gaps in data availability. For example, consultants who compiled the inventories recommended that updated district-level agricultural data should be collected and made available, especially in light of the large contribution of agriculture to Rwandan emissions generally. Workshop activities in Muhanga revealed that data such as livestock counts could be gathered at ground level, allowing for a more accurate picture of the agricultural impact on emissions. In addition, an important insight from the inventory was that, in Muhanga, emissions from waste comprise a dominant 44% of total emissions. This is not necessarily due to an unusually high amount of waste generated, but more because of the limited development of formal waste treatment facilities in Rwanda. In response, environmental officials confirmed that local governments such as Muhanga’s had begun implementing measures to drive sustainable waste management, such as separation at source between biodegradable and non-biodegradable waste, and the engagement of a waste collection company to deposit the waste streams separately. Rwanda’s well-designed and standardised national data collection system greatly facilitated the process of inventory collation, highlighting the benefits of a transparent and strong relationship between national and subnational actors. Where district-level data were unavailable, national or provincial data (for example, GDP) were scaled down to the local level. This case study highlights the importance of information and data in order to identify emission sources and put locally appropriate mitigation measures in place.

1. For more information, please see: https://africa.iclei.org/reporting-a-crucial-stepping-stone-for-local-climate-action-planning-in-rwanda/.
With regards to adaptation planning, risk and vulnerability assessments are commonly used to form the baseline. However, metrics for assessing baseline conditions have yet to be widely accepted and agreed upon. Some common data requirements for undertaking a risk and vulnerability assessment include: i) local government context (including socioeconomic and demographic data); ii) historical climate information; iii) projected climate data (including projected changes in temperature, rainfall and sea level rise if relevant); iv) current and anticipated future climate hazards; v) key sectors, services and population groups impacted by current and future climate hazards; and vi) anticipated future climate hazards. Further information on data requirements and the process to be followed when undertaking a risk and vulnerability assessment can be found in the CoM SSA SEACAP Toolbox: Module 4.4.

One of the challenges when undertaking a risk and vulnerability assessment is that global projections of climate impacts mostly have not been downscaled to the local level, meaning that available projections do not have the granularity necessary for local governments to use for planning purposes. As mentioned earlier, downscaling of national or regional data to the local level is possible, but undertaking this kind of modelling exercise requires technical expertise and can be prohibitively expensive. In addition to these challenges, localised risk analyses such as flood risk mapping are not always available and might not consider the projected future impacts of climate change. For these reasons, local governments often rely on local and traditional knowledge to capture data on existing hazards, vulnerabilities and sensitivities, and combine these with climate projections to undertake the assessment and provide a basis for adaptation planning (UN Habitat, 2015).

Local governments can also make use of available online tools. For example, the Green Book is an online planning support tool that provides quantitative scientific evidence on the likely impacts that climate change and urbanisation will have on South Africa’s cities and towns, as well as presenting a number of adaptation actions that can be implemented by local government to support climate-resilient development. Local risk profile information gathered using this tool was used successfully to support the development of a risk and vulnerability assessment as well as an adaptation response planning process in Steve Tshwete Local Municipality, South Africa. As a further example, the city of Belo-Horizonte in Brazil used vulnerability and adaptability data estimated by the Model Vulnerability Evaluation (MOVE) tool, an integrated cloud-based platform that uses spatial and statistical analyses to assess vulnerabilities associated with climate change in cities (more information provided in Annex 1). The city used maps generated from this tool to prioritise interventions in its most vulnerable areas. The city also undertakes continuous monitoring of rainfall data to manage platforms for distributing flood warnings (ICLEI, 2021). Using available data and developing these assessments provides a basis for improved decision-making and planning, facilitating the identification of the most vulnerable areas of municipalities to allow prioritisation of actions.

Ongoing planning, monitoring and evaluation

The importance of baseline assessments for climate change planning has been established; however, this is an ongoing process meaning that continuous data collection is needed. Robust standardised measurement, data collection, reporting and transparency is crucial to track emissions reductions and adaptation progress, and help drive local action towards a low-carbon future (Shultz, Gartner and Appleby, 2017). Doing so means that local governments and key partners can track their progress, share best practice, as well as benchmark their performance against peers and find areas of opportunity. This requires reporting environmental data to established reporting platforms, such as the CDP-ICLEI Unified Reporting System or the UNFCCC-sponsored Non-State Actor Zone for Climate Action (NAZCA). Local governments and the data they collect play a crucial
role here in facilitating the global transition to a low-carbon economy. For example, at the LOCS4Africa 2020 virtual congress, Msunduzi Municipality in South Africa shared their experience with using the CDP-ICLEI unified reporting system. Msunduzi Municipality officials noted how, since reporting on the platform, they have been able to allocate budgets accordingly, various municipal officials have received training on the platform, and they were able to identify the need to develop climate change-related policies and projects (for more information, please see the video: Capacity hub ICLEI-CDP unified reporting platform training LOCS4Africa 2020).

Financing climate action

As previously mentioned, in addition to climate data’s uses in planning and monitoring climate action, local governments are finding more and more that comprehensive and robust climate data are needed to develop climate change project proposals that are likely to secure finance. In recent years, the financial sector has been pressured to deliver climate change mitigation and adaptation actions and to make greener investment decisions – expectations accelerated by the Covid-19 pandemic. However, financiers require precise data, predictions and projections to assess investment risks and identify opportunities. Indeed, one of the lessons learned through the Enhancing Direct Access to Adaptation Funding in Kenya project, funded by the Climate and Development Knowledge Network (CDKN), was that data availability is critical to developing bankable project proposals, as robust data are needed to undertake feasibility studies and to calculate returns on investment. This is especially the case for ‘soft’ interventions, where it can be difficult to measure some returns such as capacity-building, awareness-creation and public-good investments (Ellis and Pillay, 2017). As a result, local governments able to provide information about, for example, current and projected local climate patterns, risks and vulnerabilities, or energy consumption and usage are more likely to find funding for proposed climate action projects. Indeed, at the LOCS4Africa 2020 virtual congress session on narrowing the climate data gap for improved project preparation in cities, Catherine Higham from CDP noted the following: “We recently analysed data submitted by 40 cities [to the CDP-ICLEI unified reporting platform] in countries on the Organisation for Economic Cooperation and Development’s (OECD’s) Overseas Development Assistance list in 2020. Of these, only 11 cities have indicated that they have received funding for their climate action projects from a development bank or other supranational body. More than 90% of these 11 cities had a risk and vulnerability assessment either completed or in progress, and all of them had an emissions inventory either completed or in progress.” In contrast, in the group of remaining cities who did not report receiving funding, only 75% had a risk and vulnerability assessment, and only 60% had an emissions inventory. There thus appears to be a correlation between more comprehensive data and local governments receiving funding for climate action projects.

“More than 90% of these 11 cities had a risk and vulnerability assessment either completed or in progress”
The challenges faced by municipalities in data-scarce environments

African municipalities face multiple interlinked and complex challenges as a result of climate change, including food and water insecurity, rural-urban migration, and resource disputes. Local governments in Africa must confront these climate-related problems along with ongoing development challenges, including rapid urban population growth, increased need for service delivery, and limited institutional capacity to address new needs. For local governments to effectively plan and adapt to these challenges, they require, amongst other things, access to reliable and robust climate data (Butterfield et al., 2017).

However, data challenges and limitations exist in most regions of the world and in relation to most municipalities. This holds true for the African continent, with multiple challenges including:

- **Unavailability of data** at local level
- **Inconsistent formats of available data**, reducing the ability for automatic use of conventional methods
- **Confidentiality of data**, making it difficult to access relevant data
- **Quality of data**, particularly when information is not from credible sources
- **Informality**, in which significant proportions of resource flows occupy an undocumented informal sector (Currie et al., 2015).

In addition, evidence from across the globe indicates that there is often a mismatch between the climate data produced by the scientific community and the needs of decision-makers, as well as their abilities to use the data (Taylor, 2019). This is both a mismatch regarding the content of the information, and the timing and format of its delivery. An overview of four case studies was recently undertaken exploring the use of climate information in planning and decision-making in three South African metropolitan municipalities (City of Cape Town (1) revision of the Spatial Development Framework and (2) maintaining a corporate risk register; (3) eThekwini risk assessment for updating the city’s climate action plan to align with the ambitions of the Paris Agreement; (4) Mangaung climate change strategy). This overview showed that sustained engagement with end users is key to effective integration of climate information into decision making. In addition, the study found that improving communication between climate data producers and users, and disrupting historical patterns of a one-directional flow of information, help to ensure that context- and scale-appropriate information about impacts and response measures is generated. (Taylor, 2019)

In a further example of mismatches in data availability, needs and uses, municipal government agencies often hold large amounts of technical data at a high spatial resolution, but are unable to analyse it. Non-governmental organisations (NGOs) often have access to households and people with local knowledge, as well as the skills to conduct surveys – which government and research organisations may lack – but NGOs may not have the expertise to process the resulting survey data. Universities may have the researchers and analytical tools, but not the data or mandate to act on the findings. Similarly, as findings from the Future Resilience for African Cities and Lands (FRACTAL) project demonstrated, the goal of engaged research is often to share the “right” scientific message about climate change. Research teams often enter a decision-making
context with a strong climate change agenda, which does not align with those that have been developing and implementing actions in a municipality on a day-to-day basis. True co-production means understanding the workings of a municipality thoroughly before intersecting climate concerns. Partnerships and coordination are therefore critical when building an evidence base for effective climate change planning in data-scarce environments. The FRACTAL project provides a good example of local government-research partnerships (McClure, 2018).

Often it is only the municipalities with the most available data that can be investigated, while the communities that need the most support are overlooked (Devex, 2021). In data-scarce regions, some of which are in Africa, this may directly impact a local government’s ability to reach service delivery, economic growth, and human development goals, as well as its ability to protect ecosystem services which support the municipality (Currie et al., 2015). This means that new and innovative approaches to collecting and using data are needed in data-scarce regions.

Innovative approaches to accessing and using climate data

In cases where local governments do not have the required data, data are inaccessible or in incorrect formats, innovative approaches are needed. For example, in contexts where quantitative data are lacking, qualitative information has a valuable role to play. This includes the use of local and indigenous knowledge on historical changes in climate, hazards and vulnerabilities which can be extremely valuable when undertaking risk and vulnerability assessments (Devex, 2021). For example, through the FRACTAL project learnings in Zimbabwe, Mubaya et al. (2020) stress the importance of understanding context and the use of bottom-up approaches in engaging decision-makers.

In addition to these sources, data from a number of different sectors could be useful in climate change planning. For example, during the LOCS4Africa 2020 virtual congress session on narrowing the climate data gap for improved project preparation in cities, Dr Olufunso Somorin from the African Development Bank (AfDB) highlighted several potential non-traditional sources of climate change data. For example, insurance companies seeing an increase over time in claims from the agricultural sector regarding crop loss due to drought or floods could provide valuable data to planners. Similarly, the infrastructure sector could provide information regarding an increase over time in required road maintenance due to flash floods. Using these more informal data sources can provide innovative solutions in data-scarce environments such as African municipalities. In addition, a recurring theme that emerged during the LOCS4Africa session was that systems must be created, in development banks and other financial and development institutions, that accept multiple storylines or narratives. These narratives should make use of both quantitative and qualitative data in order to generate more complete pictures of what is happening with regards to climate change at the local level, especially in regions such as in Africa. As Dr. Daniel Hoornweg from the World Council on Climate Data stated: “The best data in the world are still an approximation of what is happening... the narrative and the people behind the data are what is important”.

Finally, the importance of involving local communities in data collection and interpretation is increasingly being recognised. This approach allows for primary data collection to take place, while simultaneously increasing community buy-in and ownership, and making the information more contextually appropriate and far-reaching. It also means data are more easily digestible for decision-makers and others utilising them for climate change planning (Devex, 2021). An example of a community-driven primary data collection approach is provided in the Tanzania Case Study below.
Case Study: Tanzania Resilience Academy

The Resilience Academy (RA) is a World Bank-led university partnership and service delivery programme that aims to improve digital skills, competences and employment of African youth for more effective disaster risk management. The RA has been operating in Tanzania since 2018, training young people to use open-access, affordable and locally-adaptable tools and technologies, such as drones, smart phones and open-source software to generate new data and improved knowledge through innovative community-mapping initiatives aimed at better quality risk identification, risk mapping and management. Through the RA in Tanzania, local university students took part in the identification of flood risk areas in 228 sub-wards of Dar es Salaam in 2018. Under the leadership of the local ward leaders, students and community members mapped vital community assets in each sub-ward. With the assistance of the local NGO Open Map Development Tanzania (OMDTZ), 228 maps were produced to help Deltares, a Dutch knowledge institute, work with the communities in the Msimbazi Basin to create resilience plans. This programme impacted over 440 students, who learned digital skills in mapping urban risks, while communities obtained hands-on skills regarding improved flood management. Programmes such as this provide opportunities to outsource digital data collection, validation and analysis processes to local students and youth for income generation and employment, as well as capacity and skills development. The success of this programme provides evidence for the importance of involving local communities in data collection and interpretation, demonstrating how this approach can yield the data needed for effective climate change planning while simultaneously benefitting vulnerable communities. For more information on Resilience Academy in Tanzania, please visit: https://resilienceacademy.ac.tz/.

“The success of this programme provides evidence for the importance of involving local communities in data collection and interpretation.”
Conclusions

Local governments must play an integral role in combating climate change through reducing emissions, as well as building resilience and implementing adaptation initiatives. However, achieving these outcomes can be challenging, requiring different kinds of robust data. This includes: i) current and future projected climate change at the local level; ii) accurate municipal demographic and socioeconomic data; iii) baseline emissions at the local level; iv) risk and vulnerability for the municipality; and v) access to energy data. These different kinds of data are needed to understand each municipality’s baseline situation, design appropriate responses and prioritise actions that will have the greatest impact, continually track and report on progress, and provide the required studies and assessments to secure funding for climate action projects.

Data needs are especially difficult to meet in data-scarce regions such as in Africa, compounded by frequent mismatches in the data produced by the scientific community and the needs of decision-makers. However, there are different approaches local governments can use, including primary data collection, downscaling of national or regional-level data, or the use of proxy data. To capitalise on these approaches, partnerships and coordination between different stakeholders are critical, along with innovative approaches to accessing and using climate data. Specifically, data used to inform climate change planning should not be limited to quantitative information, especially in African municipalities. Indeed, narratives should make use of both quantitative and qualitative data, including local and indigenous knowledge and other non-traditional sources such as the agricultural sector or insurance companies. Importantly, involving local communities in data collection and interpretation should be prioritised in order to increase community buy-in as well as the appropriateness of the information itself.
References

City Climate Data Management Framework

The City Climate Data Management Framework and Self-Assessment Questionnaire were developed by the cities and partners involved in the C40 Empowering Cities with Data programme. The framework was designed to support all local governments to implement sound data management practices that will strengthen their understanding of the current situation, drive improvement and achieve climate mitigation ambitions. The Framework also provides a means for self-assessment of climate data management processes using the Climate Data Management Maturity Self-Assessment Questionnaire. Together, the Framework and Self-Assessment Questionnaire enable local governments to better understand the challenges and gaps in their climate data management policies, practices, systems and processes, identify areas for improvement, and set action plans.

For more information, please visit: https://www.c40knowledgehub.org/s/article/City-Climate-Data-Management-Framework?language=en_US

City Inventory Reporting and Information System (CIRIS)

The CIRIS tool, developed by the C40 Cities Climate Leadership Group, is an accessible and easy-to-use Excel-based tool for managing, calculating and...
reporting city greenhouse gas emissions inventory data. It is based on the Global Protocol for Community-Scale GHG Emission Inventories (GPC) standard, and facilitates a transparent calculation and reporting of emissions for all sectors. Once completed, CIRIS can be directly uploaded to the CDP-ICLEI unified reporting platform.

For more information, please visit: https://resourcecentre.c40.org/resources/reporting-ghg-emissions-inventories

CURB Tool: Climate Action for Urban Sustainability

CURB is an interactive planning tool developed by the World Bank in partnership with AECOM Consulting, Bloomberg Philanthropies and the C40 Cities Climate Leadership Group. It was designed specifically to help local governments take action on climate change by allowing them to map out different action plans and evaluate their cost, feasibility, and impact. CURB is an Excel-based tool that can be used offline and allows for transparent modelling. Local governments can use this tool at no cost and can access technical support upon request. CURB is also consistent with the GPC methodology.

Google Environmental Insights Explorer (EIE)

Google’s Environmental Insights Explorer (EIE) is a free online tool that makes it easier for local governments to manage, plan and reduce overall emissions and pollution. EIE’s goal is to make the process of setting an emissions baseline and identifying reduction opportunities, simple, straightforward, and actionable, which sets the foundation for effective action. EIE uses unique Google data sources and modelling capabilities to produce estimates of activity, emissions, and reduction opportunities, and makes them freely available. The insights are a modelled estimate based on actual measurements of activity and infrastructure (the same underlying information that is made available in Google Maps). The information in EIE is used by local governments around the world for climate action planning and endorsed by leading organisations.

For more information, please visit: https://insights.sustainability.google/

Greenhouse Gas Protocol for Cities

The World Resources Institute, C40 Cities Climate Leadership Group and ICLEI – Local Governments for Sustainability (ICLEI) have partnered to create a GHG Protocol standard for cities. This protocol provides a robust framework for accounting and reporting city-wide greenhouse gas emissions. It helps local governments by providing them with the standards and tools they need to measure their emissions, build more effective emissions reduction strategies, set measurable and more ambitious emission reduction goals, and to track their progress more accurately and comprehensively.

MOVE - Model for Vulnerability Evaluation for urban planning of smart cities

MOVE is an integrated cloud-based platform that uses spatial and statistical analysis to assess vulnerabilities associated with climate change in municipalities, applicable to different themes, on multiple scales and under different climate scenarios. The assessment enables the identification of the most vulnerable census zones within the municipality concerning climate disaster risks. MOVE aims to promote vulnerability assessments as an important step for disaster risk reduction practices in municipalities. That way, by diagnosing the future vulnerability of each census zone within the municipality to risks posed by climate change (e.g. floods and landslides), it will provide the public sector with information for prioritising investments and developing measures for prevention and preparedness.

For more information, please visit: https://moveonadaptation.com

Proxy Data Tool

A Proxy Data Tool and user guide were commissioned by ICLEI Africa and developed as part of the Covenant of Mayors in Sub-Saharan Africa (CoM SSA) initiative. This tool allows local governments to generate a basic GHG emissions inventory within a few hours at no cost, where this exercise would normally take three to six months at a cost of around EUR 20,000. The Proxy Data Tool follows the GPC methodology which, as mentioned earlier, is the most recognised methodology for subnational GHG inventories.

SEACAP Toolbox

The SEACAP Toolbox was developed under the CoM SSA initiative, in partnership with Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and was launched on 5 November 2020. The CoM SSA SEACAP Toolbox complements the existing SEACAP Guidebook developed by the European Commission’s Joint Research Centre (JRC) and provides an easy-to-use step-by-step series of presentations for each of the three pillars of a SEACAP, namely Energy Access, Mitigation, and Adaptation. This is a hands-on tool designed to support local governments to implement the recommendations in the SEACAP Guidebook.

For more information, please visit: https://comssa.org/en/seacap-toolbox
The Covenant of Mayor in Sub-Saharan Africa (CoM SSA) is currently co-funded by the European Union (EU), the German Federal Ministry for Economic Cooperation and Development (BMZ) and the Spanish Agency for International Development Cooperation (AECID).
About the Covenant of Mayors in Sub-Saharan Africa

Started in 2015, the Covenant of Mayors in Sub-Saharan Africa (CoM SSA) is a major catalyst for local climate action in the region, with political commitment from over 250 local governments. The purpose of CoM SSA is to support local governments in moving from planning to implementation, with a focus on unlocking climate finance at the local level.

The CoM SSA initiative is a European Union (EU) action that supports the external dimension of the European Green Deal, as the global challenges of climate change and environmental degradation require a global response. At the same time CoM SSA moves to strengthen the Africa-EU partnership and supports Agenda 2063 of the African Union Commission.

CoM SSA is the regional chapter of an international alliance of cities, the Global Covenant of Mayors for Climate and Energy. It is a partnership between city networks, development agencies and funding institutions, supporting cities in meeting the dual challenge of climate change and access to sustainable energy to achieve a low-emission, climate resilient and sustainable energy future.

Why work on energy and climate change with cities on the African continent?

• By 2050 Africa’s urban population will triple, and will be the second largest urban population in the world.
• Despite being the continent most affected by the impacts of climate change and contributing 4% to global greenhouse gas emissions, only 3% of total climate finance flows to Africa.
• Currently 548 million people lack access to electricity in Africa.

The CoM SSA initiative works through three pillars of action:

1. Planning support: development of Sustainable Energy Access and Climate Action Plans (SEACAPs),
2. Project development: urban infrastructure project support, and
3. Knowledge exchange and partnerships: city-to-city/regional partnerships and exchanges

The integrated CoM SSA Secretariat and technical helpdesk are the first contact points for CoM SSA cities and serve all CoM SSA signatories with light touch technical support and deep-dive support to a limited number of signatories. The CoM SSA Secretariat and technical helpdesk are the key coordination structures for the initiative, providing advocacy support, and ensuring effective communication and visibility for the initiative.

Contact: helpdesk@comssa.org | https://comssa.org/en